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spectively. Analogously, the third and fourth rows give 
the covariants for those groups in which er transforms 
like x 3 or x 4, without or with parity labels. 
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Abstract 

The joint probability distribution of all structure factors 
Eh_hj ( i , j  = O, ..., m) in an (m + 1) x (m + 1) Karle-  
Hauptman matrix is derived for structures in the space 
group P1. 

Introduction 

The joint probability distribution of the normalized 
structure factors gho-hm, Ehl-hm, ... and Ehm__hm 
where h0, . . . ,  hm_ l are fixed and h m is the primitive 
random variable leads via the conditional joint prob- 
ability distribution of the phases tPh0-h~, ..., tPhm_,-h, 
to the maximum-determinant rule for phase determina- 
tion: the most probable values for the phases ~0h0-h,, 
.... ~0hm_,-h, are those for which the determinant of the 
Karle-Hauptman matrix (Karle & Hauptman, 1950) 
with last column Eho-h~, . . . ,  Ehm_:hm, Eo takes on its 
maximum value (de Rango, 1969; Tsoucaris, 1970). 
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The distribution of only one structure factor, say 
Eh0-hm, is obtained by fixing the magnitudes and phases 
of Ehl_hm,...,Ehm_l_hm. The maximum of this 
distribution gives the most probable value for Eh0-h,, 
expressed in (i) the Eht-hm (i = 1, . . . ,  rn -- 1) and (ii) 
the remaining structure factors in the Karle-Hauptman 
matrix (de Rango, 1969; Tsoucaris, 1970). From a 
probabilistic point of view the structure factors (i) and 
(ii) are of a different nature since for (i) the Eh,-hm are 
fixed but the reciprocal-lattice vectors h i -- h m are not, 
while for (ii) the reciprocal-lattice vectors are fixed. 

We shall show that it is possible to treat all structure 
factors in the same way. For structures in space group 
P1 we shall derive the joint probability distribution of 
all structure factors Ehi_hj in a Karle-Hauptman 
matrix, where all hi, hj are primitive random variables. 
Two different routes will be followed. The first is 
straightforward and does not resort to any previous 
work on determinants. The second involves conditional 
joint probability distributions and shows both the 
similarities and differences from the earlier probability 
calculations that led to the maximum-determinant rule. 

As will be shown in the following paper the joint 
probability distribution of all structure factors in a 
Karle-Hauptman matrix leads to new functions whose 
maxima correspond with the most probable values for 
structure-factor phases. 

© 1979 International Union of Crystallography 
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Notation 

N: number of atoms in the unit cell 
Zj: atomic number of a t o m j  

N 

o.-- Z z7 
j = l  

Eh--~ Zj J=, a2---~-fi- exp (2n/h.rj)  

m m 1~ 1-I' - 1-I 
i1=0 t2=0 

i1<i2 

t 

/1=0 /2=0 
i1<i2 

m 

i1=0 /2=0 /3=0 
il<iz<i3 

m ~ r n m  
Z'"-  Z Z .  

/1=0 i2=0 /3=0 /4=0 
i1<i2<i3<i4 

The joint probability distribution 

First method 
Denote by P(Rlm; dP/m ) the joint probability distribu- 

tion of the magnitudes and phases of Eh0-ht, Eho-h2, 
E h , - h ?  E h o - h  3, E h , - h 3 ,  E h z - h  3, . . . ,  E h o - h  ~ Eh,-h.? . . . ,  
Eh,,_~-hm, where h o, . . . ,  h m are the primitive random 
variables. Then, analogous to Karle & Hauptman 
(1958), 

m 
t oO 2~t 

nR,,,,ff P(Rlm; ~ /m)-  (~-~'(~',) "'" 
0 0 

vo 2 rt 

. . . f  fexp [-i Z' a~/,/2)] Ri~ izYi~ i2 COS (ait i2 - -  
0 0 

m 
N ]-I' X 1-[ qj(Ytm; alto) Yili2dYili2dtti, i2, (1) 

j = l  

in which 

I m { Zj 
qj(Ylm; a i m )  : ]--[' exp i~2/2 Yizi2 

× c o s  [2zc(h,- hi). rj--ai,,=]/\) (2) 
) /  hi's" 

The R u and tp,/j are the variables corresponding to the 
magnitudes and phases of the Eh,-h~; the Yu and ct u 
are the corresponding variables of the characteristic 
function. 

The exponentials in (2) are expanded into Bessel 
functions, the averages of the individual terms are 

calculated and the Bessel functions are written as 
ascending series of (Zj/tr~/2)y/,i,. The result is 

Z t  1 Z] YiZl'2 qj(Ylm; OQm)= 1 -- -~ ~r---~z 

- - i -~T/2  Yili2YiziaYi, iaCOS(Cti, izWCti2i3--ai, i3) 

m 

1 Z 4 Z ' "  [Yi, iEYizi3Yi3i4Yi, i4 

X COS (OLi, i2 "q-0~i2i3 q- at3i, - -ai ,  i4 ) + yi, i2yi2i4Yfii4Yil h 

X COS (ai, i2 + ai2i, --  ai3i4 --CLi, i3 ) -t- Yi, i3Yi2i3Yi2i4Yili, 

X COS(aili3--t2i2i3 +a i2 i4 - -a i l i 4 ) ]  + O'  , (3) 

where O'(1/N 2) denotes terms of order 1/N 2 and 
higher in which the terms of order 1/N 2 are independent 
of the a;,,.,. The exponential form of (3) {1 + x = 
eX[ 1 + O(x 2)] } is used to calculate I--[q1. We obtain 

N 

H qj(Ylm'~ O~lm): 
j = l  

exp -- ~ yi2 i 2 -  i-~ 72/2 Yi, i2Yi2i3Yi, i3 

m 
1 0 4 z ttt 

X cos(ai, i2+ai2i3--cti, i3)+ ffa--~2 [Yi, i2Yi2i3 

× Yi3 i, Yi, i, COS (Cti~/2 + t~i2 i3 + (t i3 i4 - -  t t  i, i , )  

+twoterms'/I' + O (1)1 (4) 

Next the integrations in (1) are performed. We collect 
all terms that depend on a01 and Y0~, and employ the 
sum of cosines formula 

Y xi cos (a  +/~/) = A cos ( .  + c), 
i 

where A and e do not depend on (t, and 

(5) 

A = [~i, Z xi xi cos (~i -- ~i)]~/z (6) 

For the calculation of the integrations with respect to 
"01 and Y01 we use [Watson (1966), p. 20 formula (5) 
and p. 393 formula (1)] 
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0(3 2~ 

j J exp (--¼y:-- iay cos a ) y  dy d a =  4re exp (--a:). 
0 o ( 7 )  

The same procedure is applied to ao2, Y02, a~2, Y12, a03, 
Y03, Ct13, Y13, ~23, Y23, "", CtOm, Yom, t'ilm, Y~m, "'" and 
am- ~m, Ym- lm respectively. [In fact this procedure is first 
applied to the ~t,y up to and including t~23 , Y23. Then a 
formula for P(Rlm; #lm) in which the integrations with 
respect to the ~t,y up to and including tt~_ 1,, Y,- in have 
been performed suggests itself. Next this formula is 
proved by mathematical induction.] The result of these 
calculations is 

/7l 

P(Rlm; ~lm)- ~-('m;i')72 exp -- Ri, i~ 

+ 2 ~3/2 t ,  Lli213-- 2 a-~2a~ '" (Qi,,~6i,, + Q,,,,i,,, 

(8) 

in which 

that depend on the phases of the structure factors the 
expressions for these joint probability distributions are 
the same if the structure consists of equal atoms. The 
result for P( Xlm I Xtm_ 1) reads 

P(XtmlXlm_,) - 
T(. m U m _  1 

( - - X m  Urn-  1 exp , -1 Xm ) 

(11) 

where X m is a column vector with components Xom , 

X l m , ' " ,  S i n - l m ;  X~ is a row vector with components 
that are the complex conjugates of those of X m, Um~_~ 
and U m_ ~ are the inverse and determinant of U m_ 1 
respectively - for U m_ 1:1: see Fig. 1 - and O' ( I /N)  de- 
notes terms of order 1IN and higher in which the terms 
of order 1IN are independent of the phases. In deriving 
(11) use is made of the fact that Urn_ ~ is positive- 
definite. The joint probability distribution P(Xt,n) of 
the structure factors Eho-h,, Eho-h2, E h l - h  2, gho-h 3, 
E h ~ - h  3, E h 2 - h  3, - . . ,  Eho-h m, Eh~-hm, ..., Ehm_l_hm equals 
a product of conditional probability distributions: 

P(X Im)  = P ( X l m l X l m _ l )  P ( X l m l X t m _ 2 ) . . . P ( X o l ) .  (12)  

Zili2i3 =Ri ,  i2Ri2i Rili3cos ((I)i,i, w ~i2i -- !I)i,i3), (9) 

Qili2iai4 : Ri, i2Ri26 Ri3i4Ri~i4 

X C O S  (~i l i2 "Jp ~[2~ 3 Jr ~ i3 i4 -  '~[ l i ) ,  (10a) 

Qi~ i 2 i 4 t 3 : R il i2 R i2 i4 R i3 i4 R il i3 

x cos (~i ,: + ~P~t,- cp,~,- ~ 6 0 '  (lOb) 

Qi~i3i2i4 : Riti3Ri2i3Ri2i4Ri~i4 

X COS ((I)iti,- ~)i2i, q- (l)izi4- ~')iti,), (10c) 

and O'(1/N) represents terms of order 1IN and higher 
in which the terms of order 1IN are independent of the 
phases. These higher order terms may contain sums of 
five phases and more. 

Second method 

Denote by P(Xtml Xtm_ 1) the joint probability distri- 
bution of Eh0_hm , g h _ h m  , . . . ,  Ehm_l_hm , where h o, ..., 
hm, are  the primitive random variables and Eho-h,, 
Eho-h2 ,  E h l - h 2 ,  Eho-h3 ,  E h l - h 3 ,  E h 2 - h 3 , ' " , E h o - h m _ l ~  
E h l - h m _ l ,  "'',Ehm_z-hm_ ~ are given. The calculation of 
this conditional joint probability distribution appears to 
be only slightly different from the calculation of the 
joint probability distribution of Eho-hm, E h l - h m , . . . ,  
Ehm_i-hm , where ho, . . . ,  hm_ 1 are fixed and h m is the 
primitive random variable (for the latter see Heinerman, 
1975). Up to and including those terms of order 1/N 

:I: The elements of U m_ 1 arise from terms 

( ~  Zfexp[27ri(hp--hq'. rfl,,Xpl 
j= 1 (72 hp, h e 

in the characteristic function of P(XtmlXtm_i). To calculate these 
terms use is made of the 'least-squares' estimation 

~ e x p  [ 2 z ~ i ( h p  - -  h q ) .  r f l  ~ ~332/2Xpq, 
j =  1 ~2 

which is exact for equal-atom structures. 

1 °3 a3 a3 a~ 2 Xo~ a~,2 Xo2 . . . . . .  a~,-- 7 Xom_ , 

t73 a 3 
a#/z X~ 1 a 3/2 Xlz 

o--J'X* a--3.X* 1 a ~  o~ a ~  ,~ .... ', 
t • i 
| • 

! • i 
! • o 

0- 3 "-. o, 
tr3/2 X~'m- i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -'1 

Fig. 1. The matrix Urn_ r The X*'s are the complex conjugates of 
the X's. For the case when the structure consists of equal atoms 
Urn- l is a Kar le-Hauptman matrix. 
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From (11) and (12) it is found that 

P(Xlm) 1 ( ~  ) = m exp - X~U211X. 
n = l  

7~m<m+ l)/2 I-[ U n - 1  
n = l  

Next, employing 

1) _ x t  x .  = 

[el. Tsoucaris (1970), equation (9)] and 

fy2 

U , =  1 -- a--- ~ , ,  

(13) 

(14) 

03 ~ "  x * .  + x * .  x * .  
=]=~2/2 ( X i ,  i2Xizi3 q'3 tit2 h t3Xi ,  i3 ) 

xi, x,  3 x.*. i3 i, ,,,, 

"b X .~ • X .~ . X *  Xi2 i4 Xi~i4 x '~" qt2 tzz3 i3i4Xili4 + Xiti2 ht3 

+ x * .  x~*~, x ~  + x* .  x *  ' lh i4Xili3 Xili3 t2'3Xi2i4 txi4 

+ . .  i, i3 Xizi3 ,zt4 X i ,  i4) --F (15) 

where X* denotes the complex conjugate of AT, we 
obtain 

1 [± 
P ( X l m )  --  7crn(m+ 1)/2 exp -- I Xi ,  iz ] 2 

m 

¢r3 Z "  X.*. + X* X* 
"k- ~2/2 ( X i ,  i2 Xi2 i3 t, t3 il i2 i2i3 X i ,  i3) 

m 

y.'" x.,. (X,l ,2  x i3 , ,  , , , ,  

+ X.*. X* X.*. X~ + X.*. X.*. II t2 i2 i3 1314 i4 X i l  i2 Xi2 i4 t314 h 13 

X* X* Xi3 Xi, + ,2,3Xi i, , , , ,  "~ il i2 is i4 i4 i3 X i l  t3 X.*.  X Y .  
" 1 1 - 1 ~  \ -1 

+ X.* .  X iz  l l  13 i3 1214 

L \ I J  

It can readily be seen that the transformation X = 
R exp (iq~,) (which implies dX = R dR d~) in (16) leads 

z~ Quintets and higher-order structure invariants are contained in 
O'(I/N2). 

to (8). From (15) it follows that correct up to and 
including those terms of order 1IN that depend on the 
phases the exponential in (16) can be written as 
exp [(og/a~)(U m - 1)]. This means that to our degree of 
approximation P(Xtm) solely depends on the deter- 
minant Urn. 

Discussion 

The joint probability distribution of all structure 
factors in a Karle-Hauptman matrix has been calcu- 
lated up to and including those terms of order 1IN 
that depend on the phases. The exponent of this distri- 
bution contains squares of structure-factor magnitudes, 
triple products and quartets. For large values of N and 
when rn <~ N, which has been assumed throughout our 
calculations [in the calculations of de Rango (1969) 
and Tsoucaris (1970) it was implicitly assumed that 
m ~ N; cfi Heinerman (1975)], these terms constitute 
the most important part in the evaluation of a Karle-  
Hauptman determinant. Therefore our joint probability 
distribution resembles that of de Rango (1969) and 
Tsoucaris (1970) in the sense that it will lead to a 
function of the phases which is closely related to a 
Karle-Hauptman determinant. The relation between 
our calculations and those of de Rango and Tsoucaris 
is best seen in our second method where we use 
conditional joint probability distributions of the 
structure factors in the last columns of Karle-  
Hauptman matrices. 

In our joint probability distribution all structure 
factors Eh,_ hj (i, j = 0, ..., m i 4= j )  are variables. This 
permits the integration with respect to an arbitrary 
number of phases ~Ph,-h+ and an arbitrary number of 
structure factors Eh,-hj (i.e. magnitudes and phases) 
leading to a function which depends on a restricted set 
of phases (see following paper). This does not hold for 
the joint probability distribution in' which only h m is a 
primitive random variable. For the latter the structure 
factors Eht-hm (i = O, ..., m -- 1) of the last column of 
a Karle-Hauptman matrix are variables, but the 
remaining structure factors are not. In our calculations 
all reciprocal-lattice vectors are primitive random 
variables and all structure factors as functions of the 
reciprocal-lattice vectors are variables. 

Finally another remark should be made about the 
primitive random variables. In the approach adopted in 
this paper we considered the'structure as fixed. It was 
also assumed that certain conditions with regard to the 
atomic position vectors (not specified here) are fulfilled. 
A second approach is to consider the reciprocal-lattice 
vectors as fixed and the atomic position vectors as the 
primitive random variables. However, if it is assumed 
that the reciprocal-lattice vectors fulfil certain condi- 
tions the second approach leads to the same result as 
the first. For examples of precise formulations of the 
conditions with regard to the atomic position vectors 
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in the first approach and the reciprocal-lattice vectors 
in the second see Heinerman (1977a; 1977b, ch. IV) 
and Heinerman, Krabbendam & Kroon (1977). As 
discussed earlier (Heinerman, 1977a) the approach in 
which the atomic position vectors are the primitive 
random variables opens the possibility of including 
structural information. 

We are very much indebted to Professor Dr F. van 
der Blij of the Mathematical Institute of the Rijks- 
universiteit Utrecht for discussions on mathematical 
problems. 
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Abstract 

From the joint probability distribution of all structure 
factors in a Karle-Hauptman matrix new phase prob- 
ability distributions are obtained. These calculations 
lead to a reformulation of the maximum-determinant 
rule for phase determination. In addition a new function 
is derived whose maximum corresponds to the most 
probable values for the phases of an arbitrary subset of 
the structure factors in a Karle-Hauptman matrix. This 
function accounts for the interaction among phases in a 
Karle-Hauptman matrix through triple products and 
quartets simultaneously. 

Introduction 

The maximum-determinant rule for phase determination 
(de Rango, 1969; Tsoucaris, 1970) has been derived from 
the joint probability distribution of the normalized struc- 
ture factors Eh0-hm, Eh,-hm, "" and Ehm ,-h, where h 0, ..., 
hm-l are fixed and h m is the primitive random variable. 
Since the h i (i = 0, ..., m -- 1) are fixed the Eh,-~, 
(i, j = 0 . . . .  , m -- 1), which enter into the joint proba- 
bility distribution of Eh,-hm (i = 0 . . . .  , m -- 1), are also 
fixed. Therefore their magnitudes and phases should be 
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known before the maximum-determinant rule can be 
applied. In practice, if some of the Eh,_~j are unknown, 
they are set equal to zero (Castellano, Podjarny & 
Navaza, 1973; de Rango, Mauguen & Tsoucaris, 1975; 
Podjarny, Yonath & Traub, 1976). 

The present paper gives the derivation of a new 
function whose maximum, by analogy with the 
maximum-determinant rule, corresponds to the most 
probable values for structure-factor phases, but which 
does not require knowledge of all Eh,-hj (i, j = 0, ..., 
m -- 1). The basis of all our calculations is the result 
of the preceding paper, viz the joint probability dis- 
tribution of all structure factors in a Karle-Hauptman 
matrix (Karle & Hauptman, 1950) for structures in 
space group P1. With this distribution we shall perform 
the following calculations. (i) By fixing the magnitudes 
of the structure factors we obtain a function of phases 
which is closely related to the phase-dependent terms 
that appear in the evaluation of a Karle-Hauptman 
determinant. (ii) Integrations with respect to an arbi- 
trary set of phases are performed; next the magnitudes 
of the structure factors are fixed. This leads to a 
function of phases which is related to that in (i) but 
which depends only on an arbitrary subset of the 
phases in a Karle-Hauptman matrix. (iii) In addition to 
the integrations in (ii) we perform the integrations with 
respect to the structure-factor magnitudes that corre- 
spond to an arbitrary subset of the phases for which the 
integrations have been performed; next, the remaining 
magnitudes are fixed. This leads to a function of phases 

©1979 International Union of Crystallography 


